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Abstract: The high demand for fabricating microresonators with desired optical properties
has led to various techniques to optimize geometries, mode structures, nonlinearities, and
dispersion. Depending on applications, the dispersion in such resonators counters their optical
nonlinearities and influences the intracavity optical dynamics. In this paper, we demonstrate the
use of a machine learning (ML) algorithm as a tool to determine the geometry of microresonators
from their dispersion profiles. The training dataset with ∼460 samples is generated by finite
element simulations and the model is experimentally verified using integrated silicon nitride
microresonators. Two ML algorithms are compared along with suitable hyperparameter tuning,
out of which Random Forest yields the best results. The average error on the simulated data is
well below 15%.

© 2023 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

The small mode volumes and high quality (Q) factors of microresonators have made them excellent
tools to confine light and steer up high nonlinear effects with low input power threshold [1]. One
example is four-wave mixing (FWM), which leads to the formation of optical frequency combs
[2]. These combs have shown great applications [3], mainly in the fields of spectroscopy [4],
sensing [5], telecommunications [6], and waveform generation [7], due to their broad spectrum
with uniform spacings. Sufficiently good overlaps of the equidistant FWM generated sidebands
and the respective resonance frequencies of the microresonator are needed to generate broadband
frequency combs. Thus, the comb formation is strongly influenced by dispersion, which leads to
uneven spacings between the resonance frequencies. These deviations in resonances from the
equidistant positions are evaluated via the integrated dispersion Dint, which can be written as

Dint (m) = ωm − ω0 − D1 × (m − m0). (1)

Here, ωm is the angular resonance frequency of the mth mode with respect to the pump mode
m0 at angular pump frequency ω0. D1/2π is the free spectral range (FSR) around the pump mode.
Resonator dispersion also plays an important role in the temporal intracavity soliton dynamics.
Out of many applications, the generation of bright Kerr frequency combs occurs in presence
of anomalous dispersion [8], whereas, normal dispersion [9] favors the formation of dark pulse
solitons as shown in Fig. 1(a), where Dint has been plotted as a function of wavelength for silicon
nitride (Si3N4) ring resonators with similar radii but different core heights and widths. Recently, it
has been demonstrated that dark-bright soliton bound states can be generated in a microresonator
crossing different dispersion regimes [10], leading to light states with close to constant output
power but resembling a comb in the frequency domain. In addition, resonators with zero
dispersion not only exhibit different soliton dynamics, but also are desirable for ultra-broadband
comb generation [11,12]. Therefore, proper engineering of the dispersion becomes vital [13,14].
Dispersion calculations can be carried out via simulations and experiments. A quick analysis
of dispersion is not possible by the conventional simulation techniques due to their iterative
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nature leading to high time-complexity. Most importantly, this simulation or measurement is
a unidirectional process, i.e., from the structure, one can get an idea about the dispersion but
not the other way around. Methods of the inverse design of microresonators [15–17] usually
follow the approach of starting with a structure from empirical knowledge and then iteratively
modifying the geometries based on the deviation from the desired dispersion profile. Moreover,
some inverse design methods [18] require additional quality factor engineering. Because of the
highly nonlinear relation between the geometrical specifications of a microresonator structure
and its dispersion profile, a simple method like linear regression for the generation of structures
is not feasible. Advanced optimization methods such as evolutionary algorithms can help us in

Fig. 1. (a) Influence of microresonator geometry on the integrated dispersion. Inset: The
structural dimensions of the resonator core cross-section are shown. (b) Flowchart for
simulating the resonance frequencies for a given structure and material. After completion
of this iterative process, the data is used to calculate the dispersion parameter. Part of the
dataset is used to train the regression model and the rest is used to test the prediction of the
model.
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that aspect, however, extensive numerical simulations are required in each step of the process,
making the process slow and time-consuming [19].

Machine learning (ML) is highly successful to find inherently complex nonlinear relationships
between datasets in domains like, signal processing [20], natural language processing [21],
computer vision [22] and data mining [23]. Due to the vast success, applications of ML transcend
the boundaries of computer science to fields like classical and quantum photonics as well [24,25].
The propagation of pulses through a nonlinear medium has been effectively modelled by a
recurrent neural network [26]. ML algorithms have been utilized for predicting dispersion
relations of photonic crystals [27], estimating effective refractive index, mode area, dispersion and
other parameters of photonic crystal fibers [28], as well as for developing photonic crystal based
gas sensors [29]. In the problem of photonic inverse designing, various ML approaches show
impressive efficiencies [30]. A deep learning (DL) based bidirectional model has successfully
predicted subwavelength geometry of nanoparticles from far-field optical response [19]. For
a desired scattering profile, the geometries of the nanoparticles have been predicted using an
artificial neural network [31]. A generative adversarial network based model has been used to
predict metasurface geometries [32].

In this work, we propose a novel method to predict the structures of the microresonators
based on the dispersion parameter Dint using ML. For the inverse design, a regression ML
model has been trained by creating a dataset simulating dispersion variation over wavelength
for different microresonator geometries. The simulations have been carried out using the finite
element method (FEM) in COMSOL. After the validation of the model with the test data, this ML
technique is used to estimate the heights, widths, and radii of the fabricated resonators from the
experimentally obtained dispersion plots. Among different dispersion measurement techniques
available [13], we chose frequency comb assisted diode laser spectroscopy [33].

2. Experimental procedures and simulations

The dispersion simulations are performed with structural and material parameters as input as
shown in Fig. 1(b). To initiate the FEM solver, an approximate resonance frequency is needed
which is given by

fguess =
mc

2πRn
, (2)

where c is the speed of light, m is the mode number, n is the refractive index of the core and R
being the radius of the resonator. The output of the solver gives the eigenfrequency which is used
to get an idea of the actual refractive index of the medium for that particular optical frequency
using the Sellmeier equation for the material of the waveguide [13]. The Sellmeier equation for
the Si3N4 core is

n2(λ) = 1 +
3.0249λ2

λ2 − 0.13534062 +
40314λ2

λ2 − 1239.8422 , (3)

where λ is the wavelength in micrometer. This iterative process continues until the difference
between the resonance frequencies obtained from two consecutive iterations lies within a certain
threshold (T). With an increase in the size of the resonator, the number of modes within a fixed
spectral range increases, thereby increasing the simulation time. From the resonance frequencies
obtained from the simulation, the dispersion parameter Dint is calculated. In this work, we use
Si3N4 as resonator material. Introducing an ML model requires a dataset for the purpose of
training and testing. For the generation of the dataset for the Si3N4 ring resonators, the radii
of the rings are varied from 30 µm to 130 µm at an interval of 20 µm, whereas, the core widths
are chosen from 1 µm to 2 µm in steps of 0.1 µm. Similarly, equally spaced height values are
considered from 500 nm to 800 nm in steps of 50 nm. The cladding considered here is made of
fused silica and has a width and height of 4 µm each. These ranges of parameters for the simulated
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structures were chosen around the values that can be fabricated in our lab. The simulated dataset
of 462 samples contains resonance wavelength in the range between 1 µm and 2 µm.

The variation of FSR over frequency is illustrated in Fig. 2(a) for both normal and anomalous
dispersion regime. To verify the regression model, trained from the simulation dataset, it is
important to check whether comparable structural details are acquired when dispersion parameters
obtained from experiments are fed as input. Figure 2(b) shows the experimental setup to collect
the transmission spectrum as well as the calibration point for dispersion estimation [33]. The
SEM image for the 50-µm-radius resonator is portrayed in Fig. 2(c). The external diode cavity
laser (ECDL) is swept from 1520 nm to 1615 nm and a microresonator transmission spectrum is
recorded by an oscilloscope. Simultaneously, frequency calibration points are obtained by beating
the sweeping diode laser with a stable commercial frequency comb (repetition rate 100 MHz),
filtered through two bandpass filters (central frequencies at 35 MHz and 45 MHz with 2% and
1% filter bandwidths respectively). The frequency calibration points are simultaneously recorded
by the oscilloscope.

Fig. 2. (a) Variation of FSR with frequency for different kinds of dispersion. (b) The
experimental setup used to measure the dispersion of the various microresonators. ECDL:
External cavity diode laser, PC: Polarization controller, PD: Photodiode, BPF: Bandpass
filter. (c) Scanning electron microscope (SEM) image of the 50-µm-radius resonator.

3. Results and discussions

3.1. Simulation results

The performance of the geometrical parameter prediction model on the simulated dataset using
Random Forest (RF) and Decision Tree (DT) regressors are presented in this section. Given
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the small size of the dataset, ML models have been chosen over DL models. The RF model
has empirically outperformed other ML algorithms such as support vector machine [34] and
artificial neural networks [35]. Both RF and DT algorithms have been implemented using the
“Scikit-learn” library in python. The performances are evaluated in terms of mean absolute
percentage error (MAPE). It is defined as,

MAPE =
100%

n

∑︂n

i=1

|︁|︁|︁|︁|︁xpred
i − xact

i
xact

i

|︁|︁|︁|︁|︁ , (4)

where xact
i and xpred

i are target and predicted values for ith sample respectively. In each case, the
dataset has been divided randomly into two sections, one section (75% of the total samples) is
used for training the model and the rest (25% of the total samples) for testing. Both DT and RF
have hyperparameters, which control the extent of nonlinearity that can be modelled by the used
architecture. In a DT regression model or a regression tree, starting from the root nodes, the
dataset is split at each internal node depending upon the feature values. The condition of splitting
in each node is decided by minimizing the root mean square error between the samples and the
node threshold. We can choose the method of splitting at each node, the maximum depth of a
tree and the minimum number of samples in a leaf node. An RF model consists of many DTs.
From the training dataset, a section is selected with replacement for each of the trees. For each
DT, parallel data fitting occurs and, in the end, an average of all the tree predictions is used as the
final output of the RF model. In this case, the number of trees, amount of data used to build each
tree, etc. are the hyperparameters that can be tuned to achieve better performance. In this work,
we tuned the regressors over many possible combinations of the hyperparameters and selected
the set of values that gives the best performance, a process known as grid search. In the grid
search for RF, the number of estimators was varied from 20 to 230 and the maximum depth was
varied from 5 to 100. For DT, the maximum depth was varied from 5 to 100 and the minimum
samples leaf was varied from 1 to 10. Table 1 presents the best hyperparameters for the two ML
regressors and their corresponding performances.

Table 1. Performance of regressors for inverse design

Name of Model DT RF RF

Data type Not normalized Not normalized Normalized

Best model Hyper-parameters
Max. depth: 12 Max. depth: 20 Max. depth: 80

Min. samples leaf: 7 Estimators: 200 Estimators: 180

MAPE in radius pred. (%) 27.16 12.52 21.43

MAPE in height pred. (%) 9.15 3.14 1.89

MAPE in width pred. (%) 22.68 15.01 6.34

It can be seen that the DT model yields a consistent yet poor prediction accuracy. However,
when using RF, the performance improves drastically. The optimal model of RF regressor with
not normalized data has 200 different DTs and can be seen that the MAPE for all the structural
parameters are less than or around 15% for the worst case. Normalization of the dataset affects
the performance of ML algorithms. Therefore, we performed the training step for RF regressor
again with max-min normalized data and the results are presented in Table 1. It can be observed
that, the hyperparameters of the RF model are different for normalized and not-normalized data
samples, as for the two cases we have performed the grid search separately and noted the best set
of hyperparameters in each case. From a comparison of the columns in Table 1, it can be seen that
normalization of input and output dataset deteriorates the performance of the RF model in terms
of radius prediction. Error in radius affects the result significantly, since change in radius affects
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the FSR of the resonator itself notably. One of the main concerns for our model is that overfitting
may affect the performance of the model due to the small size of the training data. Overfitting is
encountered when a regressor increases nonlinearity to a great extent such that it fits to all of
the datapoints in the training dataset, thereby reducing the performance on the test dataset. We
followed cross-validation to tackle this problem. 4-fold cross-validation has been used for all of
the above regressors. In this process, the total training dataset is divided into four parts in each
training step, the training is done with three parts and the model is validated with the remaining
section. Figure 3 shows a histogram that illustrates the overall performance of the prediction
model on the test-segment of the simulated data. The performance of the model on the test-data
shows that the median of the errors in all three design parameters are less or around 10%. In
the inset, it can be seen that with increasing number of trees in an RF model, the negative mean
absolute error (NMAE) decreases initially, but saturates afterwards. The performance of our
model has motivated us to validate the model using experimental data. Therefore, we have applied
the ML model, trained on simulated data, to predict structural parameters from experimental
measurements. In order to check the effect of the prediction error (on average 10%) on the
resulting dispersion, we calculated the change in dispersion induced by increasing each structural
parameter (radius, height, width) separately by 10%. The corresponding MAPE for the integrated
dispersion across 1500 nm to 1600 nm (experimental range) are found to be 0.01%, 0.04% and
0.05% respectively, which is not very significant. The simulation for dataset generation has been
carried on a computer with an Intel Xeon W-1290P CPU @ 3.70 GHz and 64 GB RAM. For
resonators of radii 150 µm. and 50 µm, the elapsed times for the simulation of eigen frequencies
between 1 µm and 2 µm are around 197 minutes and 71 minutes, respectively. In evolutionary
approaches of optimization, which may be considered as an advanced optimization method, huge
number of simulations (often more than hundreds) are required for every structure design task
[19]. ML significantly speeds up the prediction of structural parameters, independent of the
resonator size. A trained RF model (with specifications: max. depth= 20, estimators= 200)
predicts structure from a dispersion profile in an average of 0.013 seconds.

Fig. 3. Histogram showing the prediction performance of the optimized RF model on
simulated data. The dashed lines indicate the median values of prediction error for each
parameter. Inset: Negative mean absolute error of the RF model versus number of trees in
the model.

3.2. Experimental results

To validate the accuracy of our prediction model, we fabricated two Si3N4 ring microresonators,
measured their dispersion, then fed the dispersion values to the RF model and finally, compared
the predicted structural details with the original designs. The resonators under test have different
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radii and waveguide heights but same waveguide width. The transmission profiles of these two
resonators with radii of 50 µm and 100 µm are shown in Fig. 4(a) and 4(c) respectively, along
with their corresponding Dint plots in Fig. 4(b) and 4(d). The pump wavelength is considered to
be around 1557 nm. Since the transmission plots contain multiple mode families, the one with
higher Q-factor has been used for dispersion measurement in each case. The resonators have
loaded Q-factors around 5 × 105 (around 0.3 GHz linewidth). The dimensions of the actual and
the predicted structures for both experiments have been listed in Fig. 4(e) and 4(f). The simulated
dispersion profiles for both the predicted structure and the SEM observed structure are also
portrayed in both Fig. 4(b) and 4(d). In the second case, the height of the microresonator is chosen
to be slightly outside the training range to check whether the model can still predict in this range.
The model predicted the radius, height and width within the 15% error margin. The MAPE error
for the experimental case is similar to that found in Table 1 for the simulated training dataset.

Fig. 4. Microresonator resonance spectra and corresponding dispersions used to predict
the structural parameters of the microresonator. (a) Transmission spectrum of a 50-µm-
radius Si3N4 resonator with its corresponding fundamental mode family being highlighted.
(b) Integrated dispersion for the fundamental mode along with a quadratic fit for the spectrum
in panel (a). (c), (d) The spectrum and dispersion for a 100-µm-radius resonator. The
simulation of the predicted dimensions and the SEM observed dimensions (after fabrication)
have been plotted in both (b) and (d). (e), (f) Dimensions of the resonators predicted by the
RF model from the experimentally obtained integrated dispersion values and comparison to
the actual structures.
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There are fabrication uncertainties regarding the accuracy of the structural parameters (around
10 nm for the best case) and also there can be additional impurities or inclinations of the core
walls, which alter the dispersion curve and can contribute to the deviation between the actual and
predicted geometrical parameters. In some cases, different resonator geometries can have similar
dispersion profiles. Moreover, the avoided mode crossing (AMX) [36], as seen prominently
in Fig. 4(d) around 1560 nm, changes slightly the quadratic fit of the dispersion profile. The
sensitive ML models are influenced by such minute deviations. These kinds of crossings are
not encountered during the simulations as the walls of the core are considered to be exactly
perpendicular which is very difficult to maintain during fabrication of the resonators. The effect of
these crossings can be negated if the FSR is small or the scanning range is broader so that we can
have more and more modes and thus the fitting becomes easier. More importantly, if the dataset
can be increased along with decreasing the intervals between the chosen structural parameters,
the prediction the proposed ML model can improve, additionally opening the possibilities of
application of DL models for the discussed inverse design problem.

4. Conclusion and outlook

We have trained a machine learning model on simulated data for predicting the structure of
integrated ring resonators from their dispersion profiles generated by varying the height, radius
and width of microresonators in finite element simulations. Comparing “decision tree” and
“random forest” algorithms, we concluded that “random forest” yields better performance for
the generation of microresonator structures. The optimized and tuned model has been used
for structure prediction based on experimentally measured dispersion profiles from silicon
nitride resonators. Increasing the size and spectral width of the training dataset and subsequent
applications of DL could further increase the accuracy of the inverse design performance. With
the ever-growing possibilities in fabrication of photonic integrated circuits, machine learning can
play an important role to precisely engineer dispersion for a large number of different applications.
In particular, this enables the generation of spectrally tailored optical soliton frequency combs
in chip-integrated microresonators. In the future, this work can be extended to more complex
geometries with organically changing resonator dimensions, which enables even more broadband
control of microresonator mode structures.
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